Roulette Winning Odds

broken image


How Roulette Payouts Give the Casino an Edge. These payouts all have one thing in common—they pay out less than the true odds of hitting a win. That's why the casino enjoys a house edge of 5.26% on roulette. Your odds of winning are always less than the payout amounts. For example, the odds of winning a straight-up bet are 37 to 1. Roulette is a drain on your wallet simply because the game doesn't pay what the bets are worth. With 38 numbers (1 to 36, plus 0 and 00), the true odds of hitting a single number on a straight-up bet are 37 to 1, but the house pays only 35 to 1 if you win!

  1. Roulette Winning Odds College Football
  2. Roulette Beater
  3. Roulette Winning Odds

Roulette offers a bewildering number of betting options, but the bets are actually straightforward enough. In order to make sure you get the correct payout, you'll want to make sure that you put your chips in exactly the right place on the table. Missing a payout because your chip isn't in the right spot is a drag.

Roulette payouts are an important part of roulette strategy. They work like this. The odds are stated in the form of x to 1, which means you'll win x dollars for every dollar you've bet. For example, the single number bet offers a payout of 35 to 1. If you win, you'll get your dollar back plus the $35 for the win.

Do you want to play online roulette for real cash prizes in the US? You can at Chumba Casino which offers sweepstakes casino games. Get 2 free sweeps coins for signing-up by clicking here.

BEST FOR: Playing Online Roulette For Cash Prizes

2 Free Sweeps Coins

Available On: Web Browser

BEST FOR: Playing Online Roulette For Cash Prizes

Chumba Casino

4.6

Chumba Casino Review

Chumba Casino is a gaming site that operates as a sweepstakes casino. It offers a variety of slots, as well as video poker, blackjack, and roulette. Chumba Casino offers a convenient platform with numerous games to choose from. Gambling casino online bonus. Players can enjoy the games with ease as they can be played directly through a browser with no download required.

Chumba is the best online casino site to play roulette for cash prizes. It's also a great option to practice your roulette strategy online. It's available to players across the US (except Washington state).

Payouts on the Outside Bets

On the edge of the table are a series of bets which are 'outside' the 38 numbers on the table. Each of these bets refers to a specific set of numbers or colors. If the ball lands on 0 or 00, you'll lose on any of the outside bets.

The outside bets include:

Roulette Winning Odds College Football

Red or Black – This bet pays out even odds (1 to 1) if the ball lands on the color you chose.

Odd or Even – This bet pays out even odds (1 to 1) if the ball lands on odd or even, depending on which you chose.

Low or High – This bet pays out even money (1 to 1) if the ball lands on 1-18 if you bet low, or if the ball lands on 19-36 if you bet high.

Columns – The numbers on the layout are organized into three columns of twelve numbers each. A 'columns' bet wins if the ball lands on one of the numbers in the column you chose. This bet pays out 2 to 1 when you win.

Dozens – There are 36 numbers on the table, so you can bet on the first dozen (1-12), the second dozen (13-24), or the third dozen (25-36). This bet also pays out 2 to 1.

Payouts on the Inside Bets

You can also bet on specific numbers and sets of numbers on the inside of the layout. These bets win less often, but they pay out more when you do win. The house edge on the inside bets is the same as the house edge on the outside bets. Phone number for harrahs casino.

The inside bets for roulette include:

Straight-up – This is a bet on a single number. It pays off at 35 to 1.

Split bet – This is a bet on any two adjacent numbers. You place the chip on the line between the two numbers in order to make this wager. This bet pays out at 17 to 1.

Street bet – This bet covers three numbers. You place your bet on the line outside of the three numbers in the row where you want to win. This bet pays out at 11 to 1.

Corner bet – Some people call this a square bet or a quarter bet. It's a bet on a corner that makes a square, and it's a bet on four numbers. A win on this type of bet pays out at 8 to 1.

Five-number bet – You can only make one five-number bet, and it's the only inside bet that offers different odds from all the others. The problem is that it has a higher house edge, making it the worst bet on the table. This bet is on the numbers 0, 00, 1, 2, and 3, and you place the chip on the outside corner line between the 1 and the 0. This bet pays out 6 to 1, but only masochists place this bet.

Six-number bet – Some people call this a line bet. It covers two adjoining rows of numbers. It pays out at 5 to 1.

How Roulette Payouts Give the Casino an Edge

These payouts all have one thing in common—they pay out less than the true odds of hitting a win. That's why the casino enjoys a house edge of 5.26% on roulette. Your odds of winning are always less than the payout amounts.

For example, the odds of winning a straight-up bet are 37 to 1. There are 37 numbers on the wheel that lose, and 1 bet on the wheel that will win. But the bet only pays out 35 to 1, not 37 to 1, so the house wins more often than it loses.

A split bet offers you odds of winning of 18 to 1, but it pays off at 17 to 1.

I could list all of them, but you get the idea by now. The casino has an unassailable mathematical advantage on every bet. No betting system or strategy can overcome this advantage.

Of course, in the short run, anything can (and often will) happen. This is called 'standard deviation', and it explains why some people walk away from the roulette table as winners. The mathematically true results only come around the closer you get to an infinite number of spins.

Roulette Winning Odds

So the best way to approach roulette is as a lark. It's a fun game. You can relax and socialize while you play. But don't expect to win, because the odds are against you. And if you do win, walk away and smile, because you beat the odds.

Introduction

The Gambler's Fallacy is the mistaken belief that if an independent event has not happened in a long time, then it becomes overdue and more likely. It is also equally incorrect that if an outcome has happened a disproportionate number of times lately, compared to statistical expectations, then it becomes overheated and less likely to occur the next time. An example of this fallacious thinking might be that if the number 23 hasn't been drawn in a 6-49 lottery the last 100 games, then it becomes more likely to be drawn during the next drawing.

Many worthless betting strategies and systems are based on belief in the Gambler's Fallacy. I got the idea for writing about this after reading an 888 online roulette article by Frank Scoblete entitled How to Take Advantage of Roulette Hot Spots. In that article, Scoblete recommends taking a count of each outcome for 3,700 spins in single-zero roulette and 3,800 spins in double-zero roulette in the hunt for 'hot numbers.' Never mind that this would take about 100 hours to make this many observations, assuming the industry standard of 38 spins per hour.

Before going further, let me say that I strongly believe modern roulette wheels made by top brands like Cammegh are extremely precise and any bias would be minuscule compared to the house advantage. Thus, testing a modern roulette for bias would be a total waste of time. Now, testing a 30-year-old hand-me-down wheel in a banana republic might be another story. However, you're on your own if you win a lot of money from said casino and try to leave with it.

That said, if you track 3,800 outcomes in single-zero roulette, the average number of times any number will hit is 3800/38=100. Sloto 777 mania. I ran a simulation of over 1.3 trillion spins, counting how many times each number was hit, sorting the outcomes to find the most frequent number and how many times it was observed, and keeping a count of how many times the most frequent number in each simulation was seen.

Hottest Number in 3,800 Spins of Double-Zero Roulette

As a former actuary, I hate to use a layman's term like the 'hottest number,' but that is how gamblers talk so will go with that. That said, following are the results of the count of the hottest number in millions of 3800-spin simulations.

Count of the Hottest Number in 3,800 Spins on Double-Zero Wheel

StatisticValue
Mean 122.02
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

Here is what the table above means in plain simple English.

  • The mean, or average, count of the hottest number is 122.02.
  • The median count of the most frequent number is 121. This means that over 50% of time the most frequent number appeared 121 times or less, as well as 121 times or more. This is possible because the probability of 121 observations is in both groups.
  • The mode, or most count of the hottest number is 120, which happens 8.29% of the time.
  • The 90th percentile is the smallest number such that the probability the count of the hottest number is at least 90% .
  • The 95th percentile is the smallest number such that the probability the count of the hottest number is at least 95%.
  • The 99th percentile is the smallest number such that the probability the count of the hottest number is at least 99%.
  • The 99.9th percentile is the smallest number such that the probability the count of the hottest number is at least 99.9%.

Hottest Number in 3,700 Spins of Single-Zero Roulette

The results are very similar with 3,700 spins tracked on a single-zero wheel. Following is a summary of the results.

Count of the Hottest Number in 3,700 Spins on Single-Zero Wheel

Roulette Beater

StatisticValue
Mean 121.90
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

The following table shows the full results of the simulation on both wheels. The two commulative columns show the probability that the count of the hottest number is the number on the left column or more. For example, the probability the hottest number in 3,700 spins of single-zero roulette is 130 or more is 0.072044.

Summary of the Count of the Hottest Number in 3,700 Spins of Single-Zero Roulette and 3,800 spins of Double-Zero Roulette

CountProbability
Single Zero
Cummulative
Single Zero
Probability
Double Zero
Cummulative
Double Zero
160 or More 0.000001 0.000001 0.000001 0.000001
159 0.000000 0.000001 0.000000 0.000001
158 0.000001 0.000001 0.000001 0.000001
157 0.000001 0.000002 0.000001 0.000002
156 0.000001 0.000003 0.000001 0.000003
155 0.000002 0.000005 0.000002 0.000005
154 0.000003 0.000009 0.000003 0.000008
153 0.000005 0.000013 0.000005 0.000013
152 0.000007 0.000020 0.000008 0.000021
151 0.000012 0.000032 0.000012 0.000033
150 0.000017 0.000049 0.000018 0.000051
149 0.000026 0.000075 0.000027 0.000077
148 0.000038 0.000114 0.000041 0.000118
147 0.000060 0.000174 0.000062 0.000180
146 0.000091 0.000265 0.000092 0.000273
145 0.000132 0.000397 0.000137 0.000409
144 0.000195 0.000592 0.000199 0.000608
143 0.000282 0.000874 0.000289 0.000898
142 0.000409 0.001283 0.000421 0.001319
141 0.000580 0.001863 0.000606 0.001925
140 0.000833 0.002696 0.000860 0.002784
139 0.001186 0.003882 0.001215 0.003999
138 0.001652 0.005534 0.001704 0.005703
137 0.002315 0.007849 0.002374 0.008077
136 0.003175 0.011023 0.003286 0.011363
135 0.004355 0.015378 0.004489 0.015852
134 0.005916 0.021295 0.006088 0.021940
133 0.007939 0.029233 0.008196 0.030136
132 0.010601 0.039834 0.010908 0.041044
131 0.013991 0.053824 0.014384 0.055428
130 0.018220 0.072044 0.018757 0.074185
129 0.023498 0.095542 0.024114 0.098299
128 0.029866 0.125408 0.030603 0.128901
127 0.037288 0.162696 0.038228 0.167130
126 0.045771 0.208467 0.046898 0.214027
125 0.055165 0.263632 0.056310 0.270337
124 0.064853 0.328485 0.066020 0.336357
123 0.074178 0.402662 0.075236 0.411593
122 0.081929 0.484591 0.082885 0.494479
121 0.087158 0.571750 0.087696 0.582174
120 0.088520 0.660269 0.088559 0.670734
119 0.084982 0.745252 0.084406 0.755140
118 0.076454 0.821705 0.075245 0.830385
117 0.063606 0.885312 0.061851 0.892236
116 0.048069 0.933381 0.046111 0.938347
115 0.032432 0.965813 0.030604 0.968952
114 0.019117 0.984930 0.017664 0.986616
113 0.009567 0.994496 0.008614 0.995230
112 0.003894 0.998390 0.003420 0.998650
111 0.001257 0.999647 0.001065 0.999715
110 0.000297 0.999944 0.000243 0.999958
109 0.000050 0.999994 0.000038 0.999996
108 or Less 0.000006 1.000000 0.000004 1.000000

Count of the Hottest Numbers in 300 Spins in Double-Zero Roulette

What if you don't want to spend 100 hours gathering data on a single wheel? Some casinos are kind enough to give you, on a silver platter, the number of times in the last 300 spins the four 'hottest' and 'coolest' numbers occurred. The image at the top of the page shows an example taken on a double-zero wheel at the Venetian.

In 300 spins, the average number of wins on a double-zero wheel for any number is 300/38=7.9. As you can see from the image above, the four hottest numbers were 20, 5, 29, and 2, which occurred 15, 14, 13, and 12 times respectively. Is this unusual? No. In a simulation of over 80 billion spins, the most frequent number, in 300-spin experiments, appeared most frequently at 14 times with a probability of 27.4%. The most likely total of the second, third, and fourth most frequent numbers was 13, 12, and 12 times respectively, with probabilities of 37.9%, 46.5%, and 45.8%. So the results of the 'hottest' numbers in the image above were a little more flat than average.

The following table shows the probabilities of the four hottest numbers in 300 spins of double-zero roulette. For example, the probability the third most frequent number happens 15 times is 0.009210.

Count of the Hottest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability
Most Frequent
Probability Second
Most Frequent
Probability Third
Most Frequent
Probability Fourth
Most Frequent
25 or More 0.000022 0.000000 0.000000 0.000000
24 0.000051 0.000000 0.000000 0.000000
23 0.000166 0.000000 0.000000 0.000000
22 0.000509 0.000000 0.000000 0.000000
21 0.001494 0.000001 0.000000 0.000000
20 0.004120 0.000009 0.000000 0.000000
19 0.010806 0.000075 0.000000 0.000000
18 0.026599 0.000532 0.000003 0.000000
17 0.060526 0.003263 0.000060 0.000001
16 0.123564 0.016988 0.000852 0.000020
15 0.212699 0.071262 0.009210 0.000598
14 0.274118 0.215025 0.068242 0.011476
13 0.212781 0.379097 0.283768 0.117786
12 0.067913 0.270747 0.464748 0.457655
11 0.004615 0.042552 0.168285 0.383900
10 0.000017 0.000448 0.004830 0.028544
9 0.000000 0.000000 0.000001 0.000020
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth hottest numbers in millions of 300-spin simulations of double-zero roulette.

Roulette Winning Odds

So the best way to approach roulette is as a lark. It's a fun game. You can relax and socialize while you play. But don't expect to win, because the odds are against you. And if you do win, walk away and smile, because you beat the odds.

Introduction

The Gambler's Fallacy is the mistaken belief that if an independent event has not happened in a long time, then it becomes overdue and more likely. It is also equally incorrect that if an outcome has happened a disproportionate number of times lately, compared to statistical expectations, then it becomes overheated and less likely to occur the next time. An example of this fallacious thinking might be that if the number 23 hasn't been drawn in a 6-49 lottery the last 100 games, then it becomes more likely to be drawn during the next drawing.

Many worthless betting strategies and systems are based on belief in the Gambler's Fallacy. I got the idea for writing about this after reading an 888 online roulette article by Frank Scoblete entitled How to Take Advantage of Roulette Hot Spots. In that article, Scoblete recommends taking a count of each outcome for 3,700 spins in single-zero roulette and 3,800 spins in double-zero roulette in the hunt for 'hot numbers.' Never mind that this would take about 100 hours to make this many observations, assuming the industry standard of 38 spins per hour.

Before going further, let me say that I strongly believe modern roulette wheels made by top brands like Cammegh are extremely precise and any bias would be minuscule compared to the house advantage. Thus, testing a modern roulette for bias would be a total waste of time. Now, testing a 30-year-old hand-me-down wheel in a banana republic might be another story. However, you're on your own if you win a lot of money from said casino and try to leave with it.

That said, if you track 3,800 outcomes in single-zero roulette, the average number of times any number will hit is 3800/38=100. Sloto 777 mania. I ran a simulation of over 1.3 trillion spins, counting how many times each number was hit, sorting the outcomes to find the most frequent number and how many times it was observed, and keeping a count of how many times the most frequent number in each simulation was seen.

Hottest Number in 3,800 Spins of Double-Zero Roulette

As a former actuary, I hate to use a layman's term like the 'hottest number,' but that is how gamblers talk so will go with that. That said, following are the results of the count of the hottest number in millions of 3800-spin simulations.

Count of the Hottest Number in 3,800 Spins on Double-Zero Wheel

StatisticValue
Mean 122.02
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

Here is what the table above means in plain simple English.

  • The mean, or average, count of the hottest number is 122.02.
  • The median count of the most frequent number is 121. This means that over 50% of time the most frequent number appeared 121 times or less, as well as 121 times or more. This is possible because the probability of 121 observations is in both groups.
  • The mode, or most count of the hottest number is 120, which happens 8.29% of the time.
  • The 90th percentile is the smallest number such that the probability the count of the hottest number is at least 90% .
  • The 95th percentile is the smallest number such that the probability the count of the hottest number is at least 95%.
  • The 99th percentile is the smallest number such that the probability the count of the hottest number is at least 99%.
  • The 99.9th percentile is the smallest number such that the probability the count of the hottest number is at least 99.9%.

Hottest Number in 3,700 Spins of Single-Zero Roulette

The results are very similar with 3,700 spins tracked on a single-zero wheel. Following is a summary of the results.

Count of the Hottest Number in 3,700 Spins on Single-Zero Wheel

Roulette Beater

StatisticValue
Mean 121.90
Median 121
Mode 120
90th Percentile 128
95th Percentile 131
99th Percentile 136
99.9th Percentile 142

The following table shows the full results of the simulation on both wheels. The two commulative columns show the probability that the count of the hottest number is the number on the left column or more. For example, the probability the hottest number in 3,700 spins of single-zero roulette is 130 or more is 0.072044.

Summary of the Count of the Hottest Number in 3,700 Spins of Single-Zero Roulette and 3,800 spins of Double-Zero Roulette

CountProbability
Single Zero
Cummulative
Single Zero
Probability
Double Zero
Cummulative
Double Zero
160 or More 0.000001 0.000001 0.000001 0.000001
159 0.000000 0.000001 0.000000 0.000001
158 0.000001 0.000001 0.000001 0.000001
157 0.000001 0.000002 0.000001 0.000002
156 0.000001 0.000003 0.000001 0.000003
155 0.000002 0.000005 0.000002 0.000005
154 0.000003 0.000009 0.000003 0.000008
153 0.000005 0.000013 0.000005 0.000013
152 0.000007 0.000020 0.000008 0.000021
151 0.000012 0.000032 0.000012 0.000033
150 0.000017 0.000049 0.000018 0.000051
149 0.000026 0.000075 0.000027 0.000077
148 0.000038 0.000114 0.000041 0.000118
147 0.000060 0.000174 0.000062 0.000180
146 0.000091 0.000265 0.000092 0.000273
145 0.000132 0.000397 0.000137 0.000409
144 0.000195 0.000592 0.000199 0.000608
143 0.000282 0.000874 0.000289 0.000898
142 0.000409 0.001283 0.000421 0.001319
141 0.000580 0.001863 0.000606 0.001925
140 0.000833 0.002696 0.000860 0.002784
139 0.001186 0.003882 0.001215 0.003999
138 0.001652 0.005534 0.001704 0.005703
137 0.002315 0.007849 0.002374 0.008077
136 0.003175 0.011023 0.003286 0.011363
135 0.004355 0.015378 0.004489 0.015852
134 0.005916 0.021295 0.006088 0.021940
133 0.007939 0.029233 0.008196 0.030136
132 0.010601 0.039834 0.010908 0.041044
131 0.013991 0.053824 0.014384 0.055428
130 0.018220 0.072044 0.018757 0.074185
129 0.023498 0.095542 0.024114 0.098299
128 0.029866 0.125408 0.030603 0.128901
127 0.037288 0.162696 0.038228 0.167130
126 0.045771 0.208467 0.046898 0.214027
125 0.055165 0.263632 0.056310 0.270337
124 0.064853 0.328485 0.066020 0.336357
123 0.074178 0.402662 0.075236 0.411593
122 0.081929 0.484591 0.082885 0.494479
121 0.087158 0.571750 0.087696 0.582174
120 0.088520 0.660269 0.088559 0.670734
119 0.084982 0.745252 0.084406 0.755140
118 0.076454 0.821705 0.075245 0.830385
117 0.063606 0.885312 0.061851 0.892236
116 0.048069 0.933381 0.046111 0.938347
115 0.032432 0.965813 0.030604 0.968952
114 0.019117 0.984930 0.017664 0.986616
113 0.009567 0.994496 0.008614 0.995230
112 0.003894 0.998390 0.003420 0.998650
111 0.001257 0.999647 0.001065 0.999715
110 0.000297 0.999944 0.000243 0.999958
109 0.000050 0.999994 0.000038 0.999996
108 or Less 0.000006 1.000000 0.000004 1.000000

Count of the Hottest Numbers in 300 Spins in Double-Zero Roulette

What if you don't want to spend 100 hours gathering data on a single wheel? Some casinos are kind enough to give you, on a silver platter, the number of times in the last 300 spins the four 'hottest' and 'coolest' numbers occurred. The image at the top of the page shows an example taken on a double-zero wheel at the Venetian.

In 300 spins, the average number of wins on a double-zero wheel for any number is 300/38=7.9. As you can see from the image above, the four hottest numbers were 20, 5, 29, and 2, which occurred 15, 14, 13, and 12 times respectively. Is this unusual? No. In a simulation of over 80 billion spins, the most frequent number, in 300-spin experiments, appeared most frequently at 14 times with a probability of 27.4%. The most likely total of the second, third, and fourth most frequent numbers was 13, 12, and 12 times respectively, with probabilities of 37.9%, 46.5%, and 45.8%. So the results of the 'hottest' numbers in the image above were a little more flat than average.

The following table shows the probabilities of the four hottest numbers in 300 spins of double-zero roulette. For example, the probability the third most frequent number happens 15 times is 0.009210.

Count of the Hottest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability
Most Frequent
Probability Second
Most Frequent
Probability Third
Most Frequent
Probability Fourth
Most Frequent
25 or More 0.000022 0.000000 0.000000 0.000000
24 0.000051 0.000000 0.000000 0.000000
23 0.000166 0.000000 0.000000 0.000000
22 0.000509 0.000000 0.000000 0.000000
21 0.001494 0.000001 0.000000 0.000000
20 0.004120 0.000009 0.000000 0.000000
19 0.010806 0.000075 0.000000 0.000000
18 0.026599 0.000532 0.000003 0.000000
17 0.060526 0.003263 0.000060 0.000001
16 0.123564 0.016988 0.000852 0.000020
15 0.212699 0.071262 0.009210 0.000598
14 0.274118 0.215025 0.068242 0.011476
13 0.212781 0.379097 0.283768 0.117786
12 0.067913 0.270747 0.464748 0.457655
11 0.004615 0.042552 0.168285 0.383900
10 0.000017 0.000448 0.004830 0.028544
9 0.000000 0.000000 0.000001 0.000020
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth hottest numbers in millions of 300-spin simulations of double-zero roulette.

Summary of the Count of the Four Most Frequent Numbers in 300 Spins of Double-Zero Wheel

OrderMeanMedianMode
First 14.48 14 14
Second 13.07 13 13
Third 12.27 12 12
Fourth 11.70 12 12

Count of the Coolest Numbers in 300 Spins in Double-Zero Roulette

The next table shows the probability of each count of the four collest numbers in 300 spins of double-zero roulette.

Count of the Coolest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability Least
Frequent
Probability Second
Least Frequent
Probability Third
Least Frequent
Probability Fourth
Least Frequent
0 0.012679 0.000063 0.000000 0.000000
1 0.098030 0.005175 0.000135 0.000002
2 0.315884 0.088509 0.012041 0.001006
3 0.416254 0.420491 0.205303 0.063065
4 0.150220 0.432638 0.595139 0.522489
5 0.006924 0.052945 0.185505 0.401903
6 0.000008 0.000180 0.001878 0.011534
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth coolest numbers in the 300-spin simulations of double-zero roulette.

Summary of the count of the Four Least Frequent Numbers on a Double-Zero Wheel

OrderMeanMedianMode
Least 2.61 3 3
Second Least 3.44 3 4
Third Least 3.96 4 4
Fourth Least 4.36 4 4

Count of the Hottest Numbers in 300 Spins of Single-Zero Roulette

In 300 spins, the average number of wins on a single-zero wheel for any number is 300/37=8.11. The next table shows the probability of each count of the four coolest numbers in 300 spins of double-zero roulette. For example, the probability the third most frequent number happens 15 times is 0.015727.

Count of the Hottest Four Numbers in 300 Spins on a Single-Zero Wheel

ObservationsProbability
Most Frequent
Probability Second
Most Frequent
Probability Third
Most Frequent
Probability Fourth
Most Frequent
25 or More 0.000034 0.000000 0.000000 0.000000
24 0.000078 0.000000 0.000000 0.000000
23 0.000245 0.000000 0.000000 0.000000
22 0.000728 0.000000 0.000000 0.000000
21 0.002069 0.000002 0.000000 0.000000
20 0.005570 0.000018 0.000000 0.000000
19 0.014191 0.000135 0.000000 0.000000
18 0.033833 0.000905 0.000008 0.000000
17 0.074235 0.005202 0.000125 0.000001
16 0.144490 0.025286 0.001624 0.000050
15 0.232429 0.097046 0.015727 0.001286
14 0.269735 0.259360 0.101259 0.021054
13 0.177216 0.382432 0.347102 0.175177
12 0.043266 0.208137 0.429715 0.508292
11 0.001879 0.021373 0.102979 0.283088
10 0.000003 0.000103 0.001461 0.011049
9 0.000000 0.000000 0.000000 0.000002
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth hottest numbers in millions of 300-spin simulations of double-zero roulette.

Summary — Count of the Four Hottest Numbers — Double-Zero Wheel

OrderMeanMedianMode
First 14.74 15 14
Second 13.30 13 13
Third 12.50 12 12
Fourth 11.92 12 12

Count of the Coolest Numbers in 300 Spins in Single-Zero Roulette

The next table shows the probability of each count of the four coolest numbers in 300 spins of double-zero roulette. For example, the probability the third coolest numbers will be observed five times is 0.287435.

Count of the Coolest Four Numbers in 300 Spins on a Double-Zero Wheel

ObservationsProbability Least
Frequent
Probability Second
Least Frequent
Probability Third
Least Frequent
Probability Fourth
Least Frequent
0 0.009926 0.000038 0.000000 0.000000
1 0.079654 0.003324 0.000068 0.000001
2 0.275226 0.062392 0.006791 0.000448
3 0.419384 0.350408 0.140173 0.034850
4 0.200196 0.484357 0.557907 0.406702
5 0.015563 0.098547 0.287435 0.521238
6 0.000050 0.000933 0.007626 0.036748
7 0.000000 0.000000 0.000001 0.000013
Total 1.000000 1.000000 1.000000 1.000000

The next table shows the mean, median, and mode for the count of the first, second, third, and fourth coolest numbers in the 300-spin simulations of single-zero roulette.

Summary of the count of the Four Least Frequent Numbers on a Single-Zero Wheel

OrderMeanMedianMode
Least 2.77 3 3
Second Least 3.62 4 4
Third Least 4.15 4 4
Fourth Least 4.56 5 5

The least I hope you have learned from this article is it is to be expected that certain numbers will come up more than others. To put it in other words, it is natural that some numbers will be 'hot' and some 'cool.' In fact, such differences from the mean are highly predictable. Unfortunately, for roulette players, we don't know which numbers will be 'hot,' just that some of them almost certainly will be. I would also like to emphasize, contrary to the Gambler's Fallacy, that on a fair roulette wheel that every number is equally likely every spin and it makes no difference what has happened in the past.

Finally, it should not be interpreted that we give an endorsement to the 888 Casino, which we linked to earlier. I am very bothered by this rule in their rule 6.2.B. Before getting to that, let me preface with a quote from rule 6.1, which I'm fine with.

'If we reasonably determine that you are engaging in or have engaged in fraudulent or unlawful activity or conducted any prohibited transaction (including money laundering) under the laws of any jurisdiction that applies to you (examples of which are set out at section 6.2 below), any such act will be considered as a material breach of this User Agreement by you. In such case we may close your account and terminate the User Agreement in accordance with section 14 below and we are under no obligation to refund to you any deposits, winnings or funds in your account.' -- Rule 6.1

Let's go further now:

Roulette Winning Odds

The following are some examples of 'fraudulent or unlawful activity' -- Rule 6.2

Next, here is one of many examples listed as rule 6.2.B

'Unfair Betting Techniques: Utilising any recognised betting techniques to circumvent the standard house edge in our games, which includes but is not limited to martingale betting strategies, card counting as well as low risk betting in roulette such as betting on red/black in equal amounts.' -- Rule 6.2.B

Let me make it perfectly clear that all betting systems, including the Martingale, not only can't circumvent the house edge, they can't even dent it. It is very mathematically ignorant on the part of the casino to fear any betting system. Why would any player trust this casino when the casino can seize all their money under the reason that the player was using a betting system? Any form of betting could be called a betting system, including flat betting. Casino 888 normally has a pretty good reputation, so I'm surprised they would lower themselves to this kind of rogue rule.


Written by: Michael Shackleford





broken image